
Modelling
Blinded Memory
with F
Lachlan J. Gunn

https://lachlan.gunn.ee
@lachlan_gunn

(Joint work with N. Asokan, Hossam ElAtali, Hans Liljestrand)

https://asokan.org/asokan/
https://lachlan.gunn.ee/

2

Goals

In the previous part, we introduced the Blinded Memory extensions

How do we know the design is secure?

Solution: formal verification of the model

instn out A, in B,
in A

instn out A

Register A

Register B Blinded = 1

Blinded = 1

jmp in B PC Cannot become blinded

3

Basic methodology

1. Write a function f simulating BliMe

2. Express the security property as a predicate P(.) on a function

3. Prove the assertion P(f)

4

The F* language

F* (F-star) is a functional, dependent-typed language in the ML family

Dependent typing: types can depend on values

e.g. the function prototype

val some_function (x:int{x % 256 = 0}):

(rv:int{rv % 2 = 0})

Why?

• Easy way to properties independently of implementation

• Type checker validates program correctness

5

Try it out yourself

Interactive editor: http://fstar-lang.org/tutorial/

Replace the code on the right with the following:

module Examples

open FStar.Mul

val some_function (x:int{x % 256 = 0}):

(rv:int{rv % 2 = 0})

let some_function x = [fill this in yourself]

6

Another example

Reference Implementation let ref reference_cumulative_sum x =

if x = 0

then 0

else x + reference_cumulative_sum (x-1)

Prototype val cumulative_sum (x:int{x >= 0}):

(rv:int{rv = reference_cumulative_sum x})

7

Another example

Types are checked using an SMT solver

• Essentially, magic box that takes a theorem and outputs yes/no/maybe

Some type checks are too hard for SMT, e.g.

let cumulative_sum x = x*(x+1)/2

Subtyping check failed;

expected type rv: Prims.nat{rv = Examples.reference_cumulative_sum x};

got type Prims.int;

The SMT solver could not prove the query. Use --query_stats for more

details.

8

An F* example

In these cases, we can prove a lemma and invoke it in our implementation:

let helpful_lemma (x:nat): Lemma

(ensures x*(x+1)/2 = reference_cumulative_sum x) =

admit()

let cumulative_sum x =

helpful_lemma x;

x*(x+1)/2

Verified module: Examples

All verification conditions discharged successfully

9

Proof by hand

Theorem. Let n be a natural number. Then,

0 + 1 + 2 + … + n = n(n+1)/2

10

Proof by hand

Theorem. Let n be a natural number. Then,

0 + 1 + 2 + … + n = n(n+1)/2

Proof. We proceed by induction.

• If n = 0, then this is trivial.

• If the theorem holds for n-1, then

0 + 1 + … + n-1 + n = n + (n-1)n/2 = (n+1)n/2

QED

11

Proving the lemma in F*

F* is good at reasoning about arithmetic, but needs help with induction

So, we don’t need to spell out the whole proof: just the inductive part

let rec helpful_lemma (x:nat): Lemma

(ensures x*(x+1)/2 = reference_cumulative_sum x) =

if x = 0 then () (* Trivial to check x=0 case *)

else helpful_lemma (x-1) (* Trivial to check, knowing x-1 case *)

12

The complete definition

let rec helpful_lemma (x:nat): Lemma

(ensures x*(x+1)/2 = reference_cumulative_sum x) =

if x = 0 then ()

else helpful_lemma (x-1)

let cumulative_sum x =

helpful_lemma x;

x*(x+1)/2

Verified module: Examples

All verification conditions discharged successfully

13

Other things, no time to discuss

Inductive types (i.e. enums)

type maybeBlinded (#t:Type) =

| Clear : v:t -> maybeBlinded #t (* Represents a non-blinded value *)

| Blinded : v:t -> maybeBlinded #t (* Represents a blinded value *)

Records (i.e. structs)

type foo = { a: int;

b: int }

let add_fields (v:foo) = (a v) + (b v)

Typeclasses

• A generic bundle of types with associated properties

14

Formal verification of BliMe

We model BliMe in F* code, and prove the security of the model

Goal: changes in blinded state never affect non-blinded state

• If any two states differ only in their blinded values...

• ...after each step, the states differ only in their blinded values.

Formally

• Equivalence relation ≡, state transition f(.)

• Prove property Safe(≡,f): a ≡ b⇒ f(a) ≡ f(b)

https://blinded-computation.github.io/blime-model/

https://blinded-computation.github.io/blime-model/

15

Refinement of the BliMe model

Generic machine

Easy to understand

Specific

We prove the correctness of BliMe by refinement

• Start with a generic state transition f(.)

16

Refinement of the BliMe model

Generic machine

Generic instruction set

Easy to understand

Specific

We prove the correctness of BliMe by refinement

• Start with a generic state transition f(.)

• Show that if g(.) is safe then f(.) is safe

17

Refinement of the BliMe model

Generic machine

Generic instruction set

CPU pipeline

Easy to understand

Specific

We prove the correctness of BliMe by refinement

• Start with a generic state transition f(.)

• Show that if g(.) is safe then f(.) is safe

• Show that if h(.) is safe then g(.) is safe

18

Refinement of the BliMe model

Generic machine

Generic instruction set

CPU pipeline

Concrete instruction set

Easy to understand

Specific

We prove the correctness of BliMe by refinement

• Start with a generic state transition f(.)

• Show that if g(.) is safe then f(.) is safe

• Show that if h(.) is safe then g(.) is safe

• Show that if i(.) is safe then h(.) is safe

19

Refinement of the BliMe model

Generic machine

Generic instruction set

CPU pipeline

Concrete instruction set

Easy to understand

Specific

We prove the correctness of BliMe by refinement

• Start with a generic state transition f(.)

• Show that if g(.) is safe then f(.) is safe

• Show that if h(.) is safe then g(.) is safe

• Show that if i(.) is safe then h(.) is safe

• Show that i(.) is safe

20

Preliminary: Blindable data representation

Blindable state can be Clear or Blinded

• Later, blinded data has a domain tag attached to identify the client

type maybeBlinded (#t:Type) =

| Clear : v:t -> maybeBlinded #t (* Represents a non-blinded value *)

| Blinded : v:t -> maybeBlinded #t (* Represents a blinded value *)

21

Preliminary: Blindable data representation

Blindable state can be Clear or Blinded

• Later, blinded data has a domain tag attached to identify the client

type maybeBlinded (#t:Type) =

| Clear : v:t -> maybeBlinded #t (* Represents a non-blinded value *)

| Blinded : v:t -> maybeBlinded #t (* Represents a blinded value *)

We then define an equivalence class on maybeBlinded

- Equal clear values, or any pair of blinded values

let equiv1 lhs rhs

= match lhs, rhs with

| Clear x, Clear y -> (x = y)

| Blinded _, Blinded _ -> true

| _ -> false

22

Most generic CPU model

Model parameters:

• State mapping: maps

machine state to machine state

CPU model:

1. Mutate machine state

Goal: Verify that this state transition is safe

23

Most generic CPU model

Model parameters:

• State mapping: maps

machine state to machine state

CPU model:

1. Mutate machine state

Goal: Verify that this state transition is safe

let equivalent_inputs_yield_equivalent_states (exec:execution_unit) (pre1 pre2 : systemState) =
equiv_system pre1 pre2 ⇒ equiv_system (step exec pre1) (step exec pre2)

let is_safe (exec:execution_unit) =
∀ (pre1 pre2 : systemState). equivalent_inputs_yield_equivalent_states exec pre1 pre2

24

CPU model

Model parameters:

• Execution unit: maps instruction &

input values to output values

CPU model:

1. Fetch instruction

2. Mutate machine state

25

CPU model

Model parameters:

• Execution unit: maps instruction &

input values to output values

CPU model:

1. Fetch instruction

2. Mutate machine state

type execution_unit (#n #r:memory_size) = word -> systemState #n #r -> systemState #n #r

val step (#n #r:memory_size)

(exec:execution_unit #n #r)

(pre_state: systemState #n #r)

: systemState #n #r

let step exec pre_state =

let instruction = Memory.nth pre_state.memory pre_state.pc in

match is_blinded instruction with

| true -> { pre_state with pc = 0uL }

| false -> exec (unwrap instruction) pre_state

26

CPU model

Model parameters:

• Execution unit: maps instruction &

input values to output values

CPU model:

1. Fetch instruction

2. Mutate machine state

Result: Verified that state transition is safe (as in the last slide)

if execution unit is safe for every instruction

type execution_unit (#n #r:memory_size) = word -> systemState #n #r -> systemState #n #r

val step (#n #r:memory_size)

(exec:execution_unit #n #r)

(pre_state: systemState #n #r)

: systemState #n #r

let step exec pre_state =

let instruction = Memory.nth pre_state.memory pre_state.pc in

match is_blinded instruction with

| true -> { pre_state with pc = 0uL }

| false -> exec (unwrap instruction) pre_state

27

CPU pipeline model

Model parameters:

• instruction decoder: maps instr

word to opcode, lists of in/out

operands

• instruction semantics: maps

decoded instr & input values to

output values, fault status

CPU model:

1. Fetch instruction

2. Decode instruction

3. Read input operands from machine

state

4. Compute output values

5. Write output values to machine state

28

CPU pipeline model

Model parameters:

• instruction decoder: maps instr

word to opcode, lists of in/out

operands

• instruction semantics: maps

decoded instr & input values to

output values, fault status

CPU model:

1. Fetch instruction

2. Decode instruction

3. Read input operands from machine

state

4. Compute output values

5. Write output values to machine state

29

CPU pipeline model

Model parameters:

• instruction decoder: maps instr

word to opcode, lists of in/out

operands

• instruction semantics: maps

decoded instr & input values to

output values, fault status

CPU model:

1. Fetch instruction

2. Decode instruction

3. Read input operands from machine

state

4. Compute output values

5. Write output values to machine state

Result: Verified that this execution unit is safe (as in the last slide), if

instruction semantics are safe

30

CPU pipeline model

What does it mean for instruction semantics to be safe?

If inputs from register file are equivalent, then result is equivalent

• Fault status is identical, and if there is no fault, then…

• Values written to register file are equivalent

• Memory operations have

• Same addresses

• Same register source/destination

let equiv_result (#di:decodedInstruction) (lhs rhs:(instruction_result di)) = (

(equiv_list lhs.register_writes rhs.register_writes)

/\ (equiv_memory_operations lhs.memory_ops rhs.memory_ops)

/\ lhs.fault = false /\ rhs.fault = false)

\/ (lhs.fault = true /\ rhs.fault = true)

31

ISA model

Finally, we prove safety for a concrete instruction set

We provide functions to…

• Parse instruction for opcode, input/output registers, immediate value

• Instructions store, load, conditional branch, add, subtract, multiply, AND, XOR

Too much code to cover in detail here

• Highlight: x AND 0 = Clear 0, even if x is blinded

32

ISA model

Finally, we prove safety for a concrete instruction set

We provide functions to…

• Parse instruction for opcode, input/output registers, immediate value

• Instructions store, load, conditional branch, add, subtract, multiply, AND, XOR

Too much code to cover in detail here

• Highlight: x AND 0 = Clear 0, even if x is blinded

Result: Verified that these instruction semantics are safe

33

Next steps for formal verification

Verified executable simulation

• C or OCaml code can be extracted from F*

Un-blindable registers/memory

• Currently PC is a special case

Microarchitectural side channels

• Effectiveness of enforcing rules during transient execution

34

Summary

F* is a useful modelling tool

Lots of useful things to prove

• BliMe’s taint propagation rule doesn’t leak information

• Model ISA implements taint propagation rule correctly

• “Special cases” like x AND 0 are implemented correctly

	Slide 1: Modelling Blinded Memory with F
	Slide 2: Goals
	Slide 3: Basic methodology
	Slide 4: The F* language
	Slide 5: Try it out yourself
	Slide 6: Another example
	Slide 7: Another example
	Slide 8: An F* example
	Slide 9: Proof by hand
	Slide 10: Proof by hand
	Slide 11: Proving the lemma in F*
	Slide 12: The complete definition
	Slide 13: Other things, no time to discuss
	Slide 14: Formal verification of BliMe
	Slide 15: Refinement of the BliMe model
	Slide 16: Refinement of the BliMe model
	Slide 17: Refinement of the BliMe model
	Slide 18: Refinement of the BliMe model
	Slide 19: Refinement of the BliMe model
	Slide 20: Preliminary: Blindable data representation
	Slide 21: Preliminary: Blindable data representation
	Slide 22: Most generic CPU model
	Slide 23: Most generic CPU model
	Slide 24: CPU model
	Slide 25: CPU model
	Slide 26: CPU model
	Slide 27: CPU pipeline model
	Slide 28: CPU pipeline model
	Slide 29: CPU pipeline model
	Slide 30: CPU pipeline model
	Slide 31: ISA model
	Slide 32: ISA model
	Slide 33: Next steps for formal verification
	Slide 34: Summary

